You can download Genting Utilities Mobile App by using keyword GUSS at Apple Store or Google Play Store.

After registration, you can check your bill online and make payment online.

REAP WHAT YOU SOW
Kebanyakan rumah lelong, pembida yang berjaya perlu membayar cukai taksiran yang tertunggak terlebih dahulu sebelum bank yang lelong rumah bayar balik kepada pembida yang berjaya.
Oleh yang demikian, pembida perlulah periksa cukai taksiran yang tertunggak untuk kita sediakan wang tunai yang secukupnya.
Rumah lelong disertakan sekali Proclamation of Sales (POS). Dalam POS ada nombor hakmilik.
Login menggunakan pengguna sedia ada anda. Jika belum ada akaun anda bolehlah buat pendaftaran.
Klik myCukai -> Senarai Carian Maklumat Harta -> Permohonan Baharu
Klik seterusnya untuk maklumat peribadi.
Pastikan D ada kurungan contoh HS(D) dan space antarata (D) dengan nombor hakmilik untuk memastikan anda berjaya membuat carian harta.
Jika berjaya anda akan menjumpai harta yang dicari dan boleh memilih maklumat yang dikehendaki iaitu
i) Carian Maklumat
ii) Penyata Cukai
iii) Bil Cukai
Satu laporan akan dikenakan caj RM20.
Maklumat harta boleh dipaparkan selepas klik setiap laporan (rujuk garis hijau)
OpenCV findContours detects change in the image color and marked it as contour.
In this example using archery target face, findContours detects the outer circle, yellow circle, bullseye circle, logos on top left and bottom left.
In this case, findContours doesn’t detect the red circle contour.
Green color is the contours found on the image.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import os import cv2 as cv import numpy as np import matplotlib.pyplot as plt def findContours(): root = os.getcwd() imgPath = os.path.join(root, 'images/target.jpg') img = cv.imread(imgPath) #change to GRAY to easily detect the contours imgGray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) ret, thresh = cv.threshold(imgGray, 127, 255, 0) contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) imgContours = cv.drawContours(img, contours, -1, (0,255,0), 3) plt.figure() plt.subplot(121) plt.imshow(imgContours) plt.show() if __name__ == '__main__': print("Start") findContours() |
findContours is an easy way to automatically detect an image shape or outline.
I wanted to learn OpenCV Perspective Transform. Tutorials that I found on the internet bit complex for me to really understand what it is all about. I have to read few tutorials before really understand it.
In layman term, perspective transform is taking a rectangle area from original image and re-project the cut rectangle to our defined size canvas.
To do this, you just need 4 corner pixel points and perspective transform will do all other pixels calculation automatically based on those 4 pixels points.
The corner pixels points must follow the order as shown in below image.
This is considered the source pixel points.
The destination points are where you want to re-project those source points into new plane.
The size of destination plane is:
width: 1000 pixels
height: 200 pixels
I just take the source rectangle width and height.
I used below image to do the perspective transform.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import os import cv2 as cv import numpy as np import matplotlib.pyplot as plt def perspectiveTransform(): root = os.getcwd() imgPath = os.path.join(root, 'images/restaurant.png') img = cv.imread(imgPath) img = cv.cvtColor(img, cv.COLOR_BGR2RGB) src = np.array([[477,539], [1476,748], [428,786], [1520,905]], dtype=np.float32) width = 1000 height = 200 dest = np.array([[0,0], [width,0], [0,height], [width,100]], dtype=np.float32) transformation = cv.getPerspectiveTransform(src, dest) warpedImg = cv.warpPerspective(img, transformation, (width, height)) plt.figure() plt.subplot(121) plt.imshow(img) plt.plot(src[:,0], src[:,1], 'r.') plt.subplot(122) plt.imshow(warpedImg) plt.plot(dest[:,0], dest[:,1], 'r.') plt.show() if __name__ == '__main__': print("Start") perspectiveTransform() |
To run the program, type at the terminal
1 |
python3 Main.py |
Untuk daerah Petaling Perdana, U12 markah purata setiap pusingan untuk menang ialah 332 manakala peringkat MSSM ialah 352 ini berdasarkan markah MSSD Petaling Perdana 2024 dan MSSM 2024.
Markah Memanah MSSD Petaling Perdana 2024 – Lelaki Bawah 12 Tahun
First time my son attended MSSD Archery for Petaling Perdana under U10 category.
He plays archery since 2023 at SKBJ (Sekolah Kebangsaan Bukit Jelutong) but only get serious in last 2 weeks of June 2024 to get ready for MSSD Petaling Perdana on 1st July 2024.
Under Individual boys started on 1st July.
It has Qualification Round (QR) and Olympic Round (OR). QR every archer has to shoot for 2 round and each round consists of 6N meaning 6 arrows per N.
MSSD made the grouping based on individual scores within the same school.
The groups competition happened fifth day which was on 5th July 2024.
For individual he got no 34 with 260 points.
My son only able to win number four for group competition and if not mistaken the organizer gave medal for number four starting this year.
Overall Archery MSSD Petaling Perdana 2024 Result
For me it was a good experience for my son as he needed to learn to be cool, had strong endurance and to be fast as you need to shoot fast for group competition due to limited time.
My son Dien joins archery club since June 2023 and he joined it because of friends influence. At first, I didn’t give much attention to his interest because I thought I would die off in a matter of months.
But Dien consistently went to training and kept asking to buy him a bow. Until he joined MSSD last June 2024 only then we bought him a bow. From there on we start to seriously focus on his interest.
Training is every Saturday from 8AM till 10AM.
This week 20/6/2024, only 2 kids left after they finished training to practice their shooting. I let him play till 1030AM.
My grill wheel drops from the grill due to misaligned railing after 11 years of use.
To repair it, need to align back the railing and welding at certain places to ensure the railing is not misaligned again.
In the video, it shows before and after repair.
1) Remove the grill door.
2) Align the railing, by knocking it with a wrench.
3) Welding the railing at few location to avoid it is misaligned in the future.
4) Clean the welding spark debris to make the railing is smooth for grill wheels.
5) Install back the grill door.
Name: Rudy
Telephone: 011 3310 8757
Saya mula pasang grille belakang rumah pada April 2013. Selepas 11 tahun, cat grille nampak lusuh dan berkarat.
Untuk memastikan karat sampai rosakkan grille saya cat semula grille dengan menggunakan Nippon Paint pada 18 Mei 2024.
Harga cat Nippon Paint 1 liter ialah RM48.
Saya pilih Nippon Paint kerana cat yang pekat jadi bila sapu agak mudah dan cepat untuk mengecat kesemua grille.
Pada bulan Mei saya banyak mengecat besi-besi yang dah berkarat untuk memastikan besi-besi ini boleh dipakai lagi lama.
Contoh seperti mengecat semula pagar rumah.